Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis.
نویسندگان
چکیده
Brain insults such as the autoimmune inflammatory process in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) induce a measure of neurogenesis, but its regenerative therapeutic consequence is limited, because it fails to regenerate functional neurons and compensate the damage. Here, we investigated whether peripheral immunomodulatory treatment for MS/EAE, glatiramer acetate (GA), can enhance neurogenesis and generate neuroprotection in the CNS of EAE-inflicted mice. EAE was induced by myelin oligodendrocyte glycoprotein peptide, either in yellow fluorescent protein (YFP) 2.2 transgenic mice, which selectively express YFP on their neuronal population, or in C57BL/6 mice. The in situ effect of GA was studied in various brain regions; neuroprotection and neurogeneration were evaluated and quantified by measuring the expression of different neuronal antigens and in vivo proliferation markers. The results demonstrated that in EAE-inflicted mice, neuroproliferation was initially elevated after disease appearance but subsequently declined below that of naive mice. In contrast, GA treatment in various stages of the disease led to sustained reduction in the neuronal/axonal damage typical to the neurodegenerative disease course. Moreover, three processes characteristic of neurogenesis, namely cell proliferation, migration, and differentiation, were augmented and extended by GA treatment in EAE mice compared with EAE-untreated mice and naive controls. The newborn neuroprogenitors manifested massive migration through exciting and dormant migration pathways, into injury sites in brain regions, which do not normally undergo neurogenesis, and differentiated to mature neuronal phenotype. This suggests a direct linkage between immunomodulation, neurogenesis, and an in situ therapeutic consequence in the CNS.
منابع مشابه
Neurogeneration and Neuroprotection by Copolymer 1 and Therapeutic Vaccines
In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), the immune system provokes the detrimental process via autoimmune inflammatory mechanisms. Still, neuronal and axonal degeneration, initiated at disease onset and revealed when compensatory CNS resources are exhausted, are the major determinant of the irreversible neurological disability, particular...
متن کاملImmunomodulatory Effect of Mesenchymal Stem Cells in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: A Review Study
Multiple Sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system that may lead to disability of the patient. Current MS treatment regimens are still insufficient and research is conducted for developing more effective therapies capable of targeting neurodegeneration, inflammation, and demyelination. Recent results of experimental and clinical studies in ...
متن کاملP 28: Bone Marrow-Derived Mesenchymal Stem Cells Reduces Neuroinflammation and Splenic Cytolytic CD8 + T Cells in Mice with Experimental Autoimmune Encephalomyelitis
Introduction: Multiple sclerosis (MS) has been recognized as a common neurodegenerative disease that occurs after an Auto reactive T cells against myelin antigens. Demyelination and inflammation are the main features of this disease. The anti-inflammatory and neuroprotective roles of bone marrow-derived mesenchymal stem cells (BM-MSCs) have been considered as a suitable tre...
متن کاملO 9: Immunomodulatory Effects of Neural Stem Cell on Multiple Sclerosis: A Systematic Review
Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are chronic inflammatory demyelinating disorders of central nervous system (CNS). While the cause is unclear, the fundamental mechanism is thought to be destruction of myelin sheaths of neurons through immune system. One of the approaches being proposed in EAE therapy is neural stem cells (NSCs) trans...
متن کاملInhibition of NR2B-Containing N-methyl-D-Aspartate Receptors (NMDARs) in Experimental Autoimmune Encephalomyelitis, a Model of Multiple Sclerosis
Neurodegeneration is the pathophysiological basis for permanent neurological disabilities in multiple sclerosis (MS); thus neuroprotection is emerging as a therapeutic approach in MS research. Modulation of excitotoxicity by inhibition of NMDARs has been suggested for neuroprotection, but selective antagonisation of the NR2B subtype of these receptors, a subtype believed to play a more pivotal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 36 شماره
صفحات -
تاریخ انتشار 2005